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Abstract

We investigate denoising techniques for streaming data. This is data that is analyzed while
it is collected. We consider spatial filters, such as the box filter, Gaussian smoothing, and the
bilateral filter; frequency-based techniques, such as fast Fourier transform and wavelet transform,
combined with thresholding of the coefficients; and a statistical neighborhood filter, the non-
local means algorithm. We discuss practical concerns for incremental implementation, such as
edge treatment, incremental updating, and parameter stability. These methods are applied to
both synthetic data and real world data. Based on several carefully designed experiments, we
note situations when these methods could fail and make recommendations for their use with
real world data. Specifically, we suggest the use of the bilateral filter alone or a combination of
the bilateral filter and non-local means algorithm.
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1 Introduction

A time series is any temporally ordered series of observations. Frequently, as when collecting
observations of various real world phenomenon, these observations will be contaminated with a
variety of errors, or noise, such as sampling and processing errors. In traditional time series data,
the denoising is done after the data has been collected. As a result, there is an opportunity to try
different denoising techniques and experiment with different parameters to select a method that
works best for a data set. Our focus in this report is on streaming data, where the data is analyzed
as it is collected. We therefore consider techniques that can be applied incrementally. We discuss
multiple classes of techniques and practical considerations for incremental implementation such as
edge treatment and incremental updating. We investigate how we can select the parameters for the
algorithms so that the same parameters can be used over time, while yielding acceptable results.
Additionally, we assess the performance of these techniques in the context of peak signal to noise
ratio for known time series with added noise and optimal parameter stability.

Many deniosing techniques rely upon an estimate of the variance of the distribution this random
noise comes from, typically assumed to be Gaussian. Gasser, et al. [7] describe a method for
estimating this unknown value based upon the sum of squared differences between the observed
data and linear interpolations approximating the true values of the time series. In this report, we
use the notation yi for the values of the time series at time index i. For a time series with N values,
starting at i = 0, the estimated noise variance as given in [7] is:

σ̂2
n =

2
3 (N − 2)

N−2∑
i=1

(
1
2
yi−1 − yi +

1
2
yi+1

)2

As discussed later in the report, we use this estimate to set the parameters of some of the
denoising techniques we investigate. There are, naturally, a variety of other techniques [4, 10] for
noise variance estimation, with different levels of robustness and computational difficultly. We use
Equation 1 because of its simplicity.

The report is organized as follows. A description of the denoising techniques we will use is
given in Section 2. We discuss the design of experiment for empirical comparison of these denoising
methods in Section 3. Experimental results on both synthetic and real world data are discussed in
Section 4 and 5. We conclude our evaluation and provide recommendations along with suggestions
for future work in Section 6.

2 Denoising techniques

There are a variety of denosing techniques, and they fit into three broad categories: local smooth-
ing filters, frequency coefficient thresholding techniques, and statistical neighborhood filters. We
discuss three spatial filters: the box filter, Gaussian filter, and bilateral filter; two frequency tech-
niques: Fourier transform and wavelet transform, with coefficient thresholding; and one statistical
neighborhood filter, the non-local means algorithm. Besides these common methods, we propose
combination approaches derived from them.

The color convention for charts in this report is black for the true time series values, if known,
blue for the noisy time series values, red for the denoised time series values, and cyan for the
residuals, the difference between the noisy and denoised time series values.
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2.1 Spatial filters

2.1.1 Box filter

The box filter is the simplest denoising technique and is a uniformly weighted moving average of the
time series. This technique works best in time series with true values that do not change rapidly
so the noise averages to zero over an interval while the true time series values remain relatively
unchanged. Smoothed values are given by

si =
∑
j∈I

w (i, j) yj ,

where the weights are given by the function

w (i, j) =
1
|I|

,

and |I| is the size of the time interval, or window, of the filter. Typically the interval is symmetric
about the point of interest, which means |I| is odd. In this technique, the interval size is a parameter
to be chosen by the analyst. Figure 1 shows the weighting scheme for the box filter.

Figure 1: Box Filter Weighting Scheme

In time series where intensity values change rapidly, this technique removes features of interest in
the time series. Figure 2 shows the performance of the box filter on simulated data generated from
the composition of two sine functions and a sawtooth function. The box filter does a reasonable
job removing noise, but it destroys features in the time series, such as the three jumps at the end
of these sawteeth. The damage to the three jumps can be seen in the residuals, show in cyan in
the figure. This damage is one of the reasons the box filter is not used in practice.
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Figure 2: Box Filter With Simulated Data

2.1.2 Gaussian filter

The Gaussian filter is a weighted moving average that weights points based upon their distance
from the point of interest according to a Gaussian distribution with standard deviation σd. The
smoothed values from the Gaussian filter are given by

si =
∑
j∈I

w (i, j) yj

where the weights are given by the function

w (i, j) =
1
zi

e
− |i−j|

2σ2
d

and zi is a normalization factor so the weights sum to 1 on the interval.
Typically a interval width of 10σd is used. This accounts for 99.99994% of the Gaussian dis-

tribution. Some computations can be saved by using an interval width of 8σd, 99.994% of the
Gaussian distribution, or 6σd, 99.7% of the Gaussian distribution. In this technique, the Gaussian
kernel standard deviation, σd, is a parameter to be chosen by the analyst. Figure 3 shows the
weighting scheme for the Gaussian filter.
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Figure 3: Gaussian Filter Weighting Scheme

As seen in Figure 4, the Gaussian filter does a reasonable job removing noise but also destroys
features in the time series, albeit to a lesser degree than for a box filter with the same window size.
The damage to the three jumps can again be seen in the residuals, show in cyan in the figure.

Figure 4: Gaussian Filter with Simulated Data
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2.1.3 Bilateral filter

The bilateral filter [13] attempts to better preserve features in the time series by applying a pair
of Gaussian weights, one for spatial distance, as in the Gaussian filter, and one for differences in
intensity values. The smoothed values from the bilateral filter are given by

si =
∑
j∈I

w (i, j) yj

where the weights are given by the function

w (i, j) =
1
zi

e
− |i−j|

2σ2
d e

−
|yi−yj |

2σ2
i

and, as before, zi is a normalization factor.
As with the Gaussian filter, an interval width of 10σ is typical. In this technique, the Gaussian

kernel standard deviations, σd and σi, are two parameters to be chosen by the analyst. Figure 5
shows the weighting scheme for the bilateral filter.

Figure 5: Bilateral Filter Weighting Scheme

As seen in Figure 6, the bilateral filter does a reasonable job both smoothing the time series
and retaining features. Damage to the three jumps cannot be seen in the residuals. Unfortunately,
the bilateral filter may retain some of the noise, particularly if the noise causes a significant change
in intensity value.

Zang and Gunturk [16] suggest that the optimal value of the standard deviation of the spatial
Gaussian kernel, σd, is in the range [1.5, 2.1] and the standard deviation of the intensity Gaussian
kernel, σi, is in the range [1.5σ̂n, 3σ̂n] for 2D image processing. Recall that σ̂n is the noise standard
deviation estimate. It is uncertain if these results translate to 1D time series denoising.
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Figure 6: Bilateral Filter with Simulated Data

2.1.4 Treatment of edge values in spatial filters

It is important to note that treatment of edge values is particularly important when incrementally
processing a time series as the most relevant data is in the leading edge of the data set. In the
case of spatial filters, the |I|−1

2 values on each edge do not have complete intervals. We adjust
normalization factor zi to ensure that the weight values in the incomplete interval still sum to 1.
Figure 7 shows the adjusted weighting scheme for the box filter for the most recent data point,
highlighted in blue.

With this edge treatment, it is simple to adjust the time series when a new data point is
received. With the updated time series, the last |I|−1

2 smoothed values can be updated and a new
smoothed value can be calculated as before. Figure 7 also highlights the updated values, in red.
These comments on edge treatment and incrementing also apply to our implementation of the other
spatial filters, namely the Gaussian and bilateral filters.
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Figure 7: Updated Edge Values for Local Smoothing Filters

2.2 Frequency techniques

2.2.1 Fourier transform

Historically, analysis in the frequency domain was conducted via the Fourier transform in its rapid
discrete form, the Fast Fourier Transform (FFT). The FFT takes uniformly spaced observations
and can transform the data relatively quickly. After transformation, coefficient thresholding is
used on the time series frequency coefficients to denoise the data, and then the denoised frequency
coefficients are reverse transformed.

There are two common procedures for modifying noisy frequency coefficients, known as thresh-
olding methods [4]. The first, hard thresholding, cancels all coefficients smaller than a particular
threshold. v (α) represents the frequency coefficients of the time series, the result of transforming
data. In hard thresholding, the denoised coefficients are given by:

v (α) =

v (α) |v (α)| > µ

0 |v (α)| < µ

Hard thresholding can create outliers, which can be partially avoided using soft thresholding.
In soft thresholding the denoised coefficients are given by:

v (α) =

v (α)− sgn (v (α))µ |v (α)| ≥ µ

0 |v (α)| < µ

Unfortunately, soft thresholding can create problems with the scale of the reverse transformed
data which can make it inappropriate for time series where the scale of the data is important. For
this reason, we will only consider hard thresholding. In this algorithm, the analyst can control the
choice of hard or soft thresholding and the thresholding cutoff, µ.

The theoretically optimal threshold is µ = σ
√

2 log I, where I is the number of data points and
σ is the standard deviation of the coefficients. In order to avoid inflating the standard deviation
of the coefficients through a large coefficient corresponding to the mean of the data, the mean is
subtracted from the time series prior to transformation, making the time series a zero-mean dataset.
In practice this threshold is too high and cancels too many coefficients that do not correspond to
noise. Instead, µ = 3σ is used for hard thresholding and µ = 3

2σ is used for soft thresholding [1]
for 2D image processing. It is uncertain if these results translate to 1D time series denoising.
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As can be seen in Figure 8, the Fourier transform struggles near the edges, where Gibbs phe-
nomenon may occur. This makes the Fourier transform less than ideal for incremental data denois-
ing, where the most relevant data is near the end of the time series.

Figure 8: Fourier Transform Filter with Simulated Data

Incremental updates present a problem for the Fourier transform, as the transform can only be
applied to multiple data points, and larger data sets are better. This means that it takes more
computations to incrementally update Fourier transform coefficient thresholding smoothed time
series than locally smoothed time series.

2.2.2 Wavelet transform

The wavelet transform is one of the most popular frequency domain alternatives to the Fourier
transform. While the Fourier transform completely transforms the time series into the frequency
domain, the wavelet transform offers both frequency and time information by fitting a series of
finite length functions, wavelets, to the time series. One such wavelet is the Haar wavelet, Figure
9. This allows for filtering both by frequency and temporal relationships [8]. There are a variety of
wavelet families to choose from, and the wavelet transformations can be repeated to a desired level
of resolution. We use the Haar wavelet due to its simplicity, but many other families of wavelets
give better performance.
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Figure 9: Haar Wavelet

Mota, Vasconcelos, and Silva [11] outlined a algorithm for processing continuous data streams
in real time using the discrete wavelet transform, inspired by an older result by Vishwanath, called
the Recursive Pyramid Algorithm [15].

Once the data has been wavelet transformed, the data is denoised via frequency coefficient
thresholding, as with the Fourier transform [6].

In this technique, the analyst choses the wavelet family, the number of levels of decomposition,
and the thresholding cutoff, µ. Figure 10 shows the results from denoising with a Haar wavelet
transform, with different hard thresholds.

In this case, there is no special edge treatment. Incremental data processing is often accom-
plished via a real time algorithm, as mentioned above and frequency coefficients are thresholded
and back transformed immediately afterwards.

2.3 Statistical neighborhood filters

2.3.1 The non-local means algorithm

Statistical neighborhood filters attempt to fix the problems associated with local smoothing filters
by calculating the smoothed value as a weighted average of other values in the time series based
upon the similarity between the neighborhoods around the time series values. Figure 11 shows three
neighborhoods highlighted in the time series. The values in the green window are more similar to
the values in the black window than the values in the red window and, thus, should be weighted
higher.

The non-local means algorithm was first introduced by Buades et al. [1]. Non-local means has
primarily been used for image processing, but it has been mentioned in a 1D context in several
papers ( [2], [14], [17]). We use a modification of this algorithm for efficient 3D medical image
processing by Coupé et al. [3].

In the non-local means algorithm, smoothed values are given by

si =
∑
j∈N

w (i, j) yj

where the weights are given by the function

9



Figure 10: Wavelet Transform Filter with Simulated Data

w (i, j) =
1
zi

e
−
|Yi−Yj |

2

2βσ̂2
n|Y |

In this scheme, Yi is a vector of intensity values in the window, or neighborhood, around yi,
|Yi − Yj | is the L2 norm of the difference in intensity values in these intervals, |Y | is the window
size, and β is a parameter chosen by the analyst to control the amount of smoothing. According to
Coupé et al. [3], β varies between 0.0 and 1.0, with values of β closer to 1.0 better for high levels
of noise and values of β closer to 0.5 better for lower levels of noise.

Duval et al. [5] notes that neighborhood preselection can improve the results of the non-local
means algorithm by assigning a weight of 0 to the yj values that have neighborhoods that are too
dissimilar to the neighborhood, Yi, under consideration. Duval et al. uses a preselection test based
upon the norm of the difference between neighborhoods. A more complex preselection method is
described by Buades et al. [1]. We use Duval et al.’s preselection test:

w (i, j) =


1
zi

e
−
|Yi−Yj |

2

2βσ̂2
n|Y | |Yi − Yj | < T

0 otherwise
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Figure 11: Non-local Means Window Comparison

Duval et al. [5] suggests that values of T near 20 or 30 work well for 2D images. This
threshold does make sense for denosing time series. We will consider thresholds of the type
T = δ (maxYj −minYj) |Y |, where δ ∈ [0.0, 1.0]. This threshold is a percentage of an approxi-
mation of the maximum intensity interval distance. Duval et al. recommends window sizes of 5
or 7 for 2D image processing. As before, it is uncertain if these results translate to 1D time series
denoising.

In this algorithm, the analyst can control the amount of smoothing via β, the preselection
parameter δ, the window size, and the portion of the time series that is compared. Figure 12 shows
the performance of the non-local means algorithm with different values of β. Notice how similar
the performance is to the bilateral filter, Figure 6.

As with the spatial filters, the |I|−1
2 values on the edges do not have complete intervals, or win-

dows. In order to calculate weights, we compare the incomplete neighborhood Yi with incomplete
neighborhoods around the other points Yj . We adjust normalization factor zi to ensure that the
weight values in the incomplete interval still sum to 1.

With this edge treatment, it is simple to adjust the time series when a new data point is received.
With the updated time series, the last |I|−1

2 smoothed values can be updated and a new smoothed
value can be calculated as before.
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Figure 12: Non-Local Means with Simulated Data

2.4 Combination approaches

An obvious question to ask is the following: can we do better by combining denoising techniques,
that is, applying them in succession to the data? A motivation for this is the non-local means
algorithm, where we might expect to find better matches if the data was denoised first.

Iterating the box filter and Gaussian filter is well understood and is equivalent to using a box
filter with a wider interval or Gaussian filter with a larger kernel, σd. We do not investigate these
here. Iterating the Fourier transform or wavelet transform coefficient thresholding is equivalent to
using a Fourier transform or wavelet transform filter with a higher frequency coefficient threshold.
We do will not investigate these here either. We also do not consider combinations of frequency
and spatial or statistical neighborhood techniques, as these have been investigated elsewhere.

Iterating a bilateral filter or non-local means filter is more complex. Also, the question of
combining a bilateral filter and non-local means filter is open. We will investigate all three of these
possibilities.
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3 Design of experiments for empirical comparison

The denoising techniques described in Section 2 are evaluated using peak signal to noise ratio
(PSNR), for known time series with added noise. PSNR [9] is the ratio between the maximum
possible value of a time series and the maximum value of the noise. It is a measure of how noisy a
signal is, and therefore how effective a denoising algorithm was and is calculated as follows:

PSNR = 10 · log10


(

max
i
{yi}

)2

MSE


where MSE, mean square error, is

MSE =
1
N

N−1∑
i=0

(yi − si)
2 .

In real world data, we do not know the true time series values are in most cases, otherwise there
is no need to denoise. Hence, PSNR can not be used to evaluate such data. Therefore, we create
three synthetic time series that contain features similar to those in real world data. We select
denoising parameters based on best PSNR values. Then, we view the effect of these parameters on
real world data.

3.1 Real world data

As an example of real world data, we consider the weather data from weather stations near the
wind farms in the Bonneville Power Administration (BPA) balancing area. The data in the time
series was sampled at 5 minute intervals. Each weather station measures seven variables, as shown
in Figure 13, for the Augspurger station on October 10, 2011.
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Figure 13: The Seven Weather Variables - Barometric Pressure, Temperature, Wind Speed, Peak Wind
Speed, Wind Direction, Peak Wind Direction, and Relative Humidity - on October 10, 2011.
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3.2 Synthetic data

One of the most popular noise models is Additive White Gaussian Noise (AWGN). AWGN is
comprised of independent identically distributed real values from the Gaussian distribution with
known, or more commonly unknown, standard deviation, σn.

Noise of a particular percentage is added by using σn = p · v as the standard deviation of the
distribution that generated the noise, were v = max{Y } −min{Y } is the maximum possible range
of values that the time series Y could take and 0 ≤ p ≤ 1 is the percentage. To evaluate the
performance we apply denoising techniques on three known time series with p = 1, 5, 10, 20 and
30% AWGN noise added. Figure 14 displays the time series with p = 10% noise added.

Figure 14: Known Time Series - 10% Noise

All of the time series were created by taking low frequency sinusoidal behavior and adding
features of interest. There are a few interesting observations that can be made about the three
time series.

The first time series was created by taking low frequency sinusoidal behavior and adding a sharp
increase in intensity one quarter of the way through the time series and adding a sharp decrease in
intensity three quarters of the way through the time series. In some cases the noise obscures the
sharp increase or decrease in intensity, making it appear to be a more gradual increase or decrease
in intensity. Noise can make features impossible to recover.

The second time series was created by taking low frequency sinusoidal behavior and adding two
brief, sharp increases in intensity, at one and two thirds of the way through the time series. In
some cases the noise can become indistinguishable from these features, making them impossible to
recover.

The third time series was created by taking low frequency sinusoidal behavior and adding three
sawtooth features, at one, three, and six eights of the way through the time series. As with the first
time series, it is possible for the noise to obscure the sharp decrease at the end of the saw tooth
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Time Series 1 Time Series 2 Time Series 3

1% Noise 85.546 72.155 67.335

5% Noise 81.121 70.323 66.857

10% Noise 73.582 66.015 65.038

20% Noise 63.132 57.815 60.987

30% Noise 56.497 51.587 56.220

Table 1: Noisy PSNR

features, making it appear to be a more gradual decrease in intensity.
The average PSNR values over 25 iterations of each the time series without denoising are shown

in Table 1. An ideal result offers significantly higher PSNR values and is relatively insensitive to
small changes in parameter choice.

3.3 Parameter settings

We evaluate the denoising techniques in a full factorial design over the following parameter ranges
as shown in Table 2

All Methods p: 1%, 5%, 10%, 20% and 30%

Box Filter |I|: 3, 5, 7 and 9

Gaussian Filter σd: 0.1, 1.0, 2.0, 3.0 and 4.0

Bilateral filter
σd: 0.1, 1.0, 2.0, 3.0 and 4.0

σi: 0.1σ̂n, 1.0σ̂n, 2.0σ̂n, 3.0σ̂n and 4.0σ̂n

Frequency Methods µ: 0.1σ, 1.0σ, 2.0σ and 3.0σ

Non-Local Means
β: 0.5, 0.75 and 1.0

|Y |: 3, 5, 7 and 9

δ: 0.25, 0.5 and 0.75

Table 2: Parameter ranges.

We apply denoising methods using parameter settings described in Table 2 on the three synthetic
time series data. For each parameter setting, we replicate the experiment five times to account
for the variation in the noise. Each time, we create a new set of time series signals by adding
different randomly generated noise using the same percentage p. After applying each methods on
the synthetic data, PSNR values are summarized. Further iterations were run for finer resolution
at parameter values that appeared to be near optimal for each denoising method, increasing the
resolution of the grid in areas of interest.
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4 Experimental results and parameter selection on synthetic data

The following are the experimental results from applying all parameter settings for the six denoising
methods and combination approaches on the three synthetic time series data at different noise levels.

4.1 Box filter

Table 3 shows the best performance of the box filter in the search area. Table 4 shows the per-
formance of the box filter when |I| = 7. The PSNR value for this parameter setting and the
percentage of the maximum PSNR value are listed in each cell. The box filter consistently pro-
duces poor performance, but the performance is stable across the values of the parameter in the
search area.

Time Series 1 Time Series 2 Time Series 3

1% Noise 85.594 72.175 67.346

5% Noise 81.206 70.377 66.771

10% Noise 74.047 66.201 65.354

20% Noise 64.323 58.005 60.920

30% Noise 56.888 52.199 57.145

Table 3: Box Filter Best PSNR

Time Series 1 Time Series 2 Time Series 3

1% Noise 85.549/99.9% 72.175/100.0% 67.346/100.0%

5% Noise 81.059/99.8% 70.181/99.7% 66.747/100.0%

10% Noise 73.249/98.9% 66.040/99.8% 64.923/99.3%

20% Noise 62.786/97.6% 57.932/99.9% 60.631/99.5%

30% Noise 56.165/98.7% 51.829/99.3% 56.082/98.1%

Table 4: Box Filter Selected Parameter PSNR - |I| = 7

4.2 Gaussian filter

The Gaussian filter does not perform significantly better than the box filter.
Table 5 shows the best performance of the Gaussian filter in the search area. Table 6 shows

the performance of the Gaussian filter when σd = 2.25. The PSNR value for this parameter setting
and the percentage of the maximum PSNR value are listed in each cell. The Gaussian filter also
consistently produces poor performance, but the performance is stable across the values of the
parameter in the search area. The performance is slightly better than the box filter and slightly
less stable.
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Time Series 1 Time Series 2 Time Series 3

1% Noise 83.257 71.659 74.807

5% Noise 80.684 70.459 79.871

10% Noise 75.844 68.646 69.177

20% Noise 69.529 60.971 62.031

30% Noise 61.243 56.495 58.172

Table 5: Gaussian Filter Best PSNR

Time Series 1 Time Series 2 Time Series 3

1% Noise 83.257/100.0% 71.659/100.0% 63.953/85.5%

5% Noise 80.684/100.0% 70.459/100.0% 63.685/79.7%

10% Noise 75.844/100.0% 67.568/98.4% 62.980/91.0%

20% Noise 67.086/96.5% 60.005/98.4% 60.437/97.4%

30% Noise 59.973/97.9% 54.554/96.6% 56.797/97.6%

Table 6: Gaussian Filter Selected Parameter PSNR - σd = 2.25

4.3 Bilateral filter

The bilateral filter offers significantly improved performance compared to both the box and Gaus-
sian filters.

Table 7 shows the best performance of the bilateral filter in the search area. Table 8 shows
the performance of the bilateral filter when σd = 2.5 and σi = 2.5σ̂n. The PSNR value for this
parameter setting and the percentage of the maximum PSNR value are listed in each cell. The
bilateral filter performs well and is reasonably stable in the search area. The performance is
significantly better than the box or Gaussian filters and slightly less stable.

Time Series 1 Time Series 2 Time Series 3

1% Noise 127.251 128.396 121.790

5% Noise 97.303 96.758 96.698

10% Noise 81.774 78.128 84.987

20% Noise 69.794 63.453 70.033

30% Noise 62.657 59.049 61.736

Table 7: Bilateral Filter Best PSNR
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1% Noise 124.947/98.2% 126.752/98.7% 110.432/90.7%

5% Noise 93.220/95.8% 92.841/96.0% 96.698/100.0%

10% Noise 79.580/97.3% 75.578/96.7% 84.480/99.4%

20% Noise 64.659/92.6% 60.585/95.5% 68.456/97.7%

30% Noise 57.875/92.4% 53.774/91.1% 60.891/98.6%

Table 8: Bilateral Filter Selected Parameters PSNR - σd = 2.5, σi = 2.5σ̂n

4.4 Fourier transform

Fourier transform coefficient thresholding does not appear to be as effective as the bilateral filter,
giving performance equivalent to the box and Gaussian filters.

Table 9 shows the best performance of Fourier transform coefficient thresholding in the search
area. Table 10 shows the performance of Fourier transform coefficient thresholding when µ = 0.15σ.
The PSNR value for this parameter setting and the percentage of the maximum PSNR value are
listed in each cell. Fourier transform coefficient thresholding particularly struggles with a fixed
thresholding level, which is likely why methods such as SURE [12] are so popular with frequency
based techniques. Fourier transform coefficient thresholding also has significantly less stable optimal
parameters compared to the local neighborhood techniques.

Time Series 1 Time Series 2 Time Series 3

1% Noise 75.495 64.912 72.728

5% Noise 74.657 65.029 71.950

10% Noise 69.444 61.559 66.948

20% Noise 63.094 57.928 58.394

30% Noise 59.586 57.348 51.886

Table 9: Fourier Transform Coefficient Thresholding Best PSNR

Time Series 1 Time Series 2 Time Series 3

1% Noise 70.638/93.6% 62.517/96.3% 67.359/92.6%

5% Noise 70.752/94.8% 62.200/95.6% 66.589/92.5%

10% Noise 69.444/100.0% 61.559/100.0% 65.227/97.4%

20% Noise 53.774/85.2% 49.052/84.7% 55.580/95.2%

30% Noise 45.173/75.8% 41.630/72.6% 48.409/93.3%

Table 10: Fourier Transform Coefficient Thresholding Selected Parameter PSNR - µ = 0.15σ
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4.5 Wavelet transform

Wavelet transform coefficient thresholding also gives performance similar to the box and Gaussian
filters.

Table 11 shows the best performance of wavelet transform coefficient thresholding in the search
area. Table 12 shows the performance of wavelet transform coefficient thresholding when µ = 0.3σ.
The PSNR value for this parameter setting and the percentage of the maximum PSNR value are
listed in each cell. Wavelet transform coefficient thresholding also struggles with a fixed thresholding
level and also struggles high levels of noise. At low levels of noise wavelet transformation coefficient
thresholding is almost as effective as the bilateral filter. Wavelet transform coefficient thresholding
also has significantly less stable optimal parameters compared to the local neighborhood techniques.

Time Series 1 Time Series 2 Time Series 3

1% Noise 104.704 105.849 103.423

5% Noise 76.321 74.722 80.334

10% Noise 64.351 61.333 67.268

20% Noise 51.839 49.754 54.477

30% Noise 46.453 51.175 47.660

Table 11: Wavelet Transform Coefficient Thresholding Best PSNR

Time Series 1 Time Series 2 Time Series 3

1% Noise 87.042/83.1% 86.556/81.8% 91.880/88.8%

5% Noise 76.321/100.0% 73.853/98.8% 79.821/99.4%

10% Noise 63.265/98.3% 61.333/100.0% 67.268/100.0%

20% Noise 50.248/96.9% 46.852/94.2% 52.868/97.0%

30% Noise 44.178/95.1% 40.057/78.3% 47.362/99.4%

Table 12: Wavelet Transform Coefficient Thresholding Selected Parameter PSNR - µ = 0.3σ

4.6 Non-local means

Non-local means offers performance that is nearly equivalent to the bilateral filter.
Table 13 shows the best performance of the bilateral filter in the search area. Table 14 shows

the performance of the bilateral filter when β = 0.5, |I| = 7, and T = 0.75 (maxYj −minYj). The
PSNR value for this parameter setting and the percentage of the maximum PSNR value are listed
in each cell. The non-local means algorithm has similar, but slightly inferior performance to the
bilateral filter.

It is worth noting that the optimal value for the parameter β did increase as the noise level of
the time series increased. It is an open question if β could be set with a fixed relationship between
the variance of the time series and the estimated noise variance.
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Theoretically, non-local means should work better on longer time series. An area of future
research would be to consider this stability analysis on significantly longer time series. It is known
that the computation time is much longer and the preselection is much more significant for non-local
means on large time series.

Time Series 1 Time Series 2 Time Series 3

1% Noise 114.852 112.238 101.050

5% Noise 89.317 89.332 92.007

10% Noise 77.760 75.828 79.996

20% Noise 65.997 60.698 68.439

30% Noise 58.928 54.630 62.217

Table 13: Non-Local Means Filter Best PSNR

Time Series 1 Time Series 2 Time Series 3

1% Noise 114.852/98.0% 112.238/98.1% 101.050/98.0%

5% Noise 89.317/98.6% 89.332/97.4% 92.007/98.1%

10% Noise 77.760/95.7% 75.828/95.1% 79.996/98.8%

20% Noise 65.997/95.5% 60.698/95.0% 68.439/96.6%

30% Noise 58.928/96.5% 54.630/99.6% 62.217/96.1%

Table 14: Non-Local Means Filter Selected Parameters PSNR - β = 0.5, |I| = 7, δ = 0.75

4.7 Performance of combination approaches

We consider several combination techniques: two different iterations of the bilateral filter, two
iterations of the same bilateral filter, iterating the bilateral filter until the result changes by less
than 1%, two different iterations of non-local means, and a combination of the bilateral filter and
non-local means.

• Two different bilateral filters Two different iterations of the bilateral filter offered slightly
improved performance compared to a single iteration of the bilateral filter.

Table 15 shows the best performance of two different iterations of the bilateral filter in the
search area. Table 16 shows the performance of two different iterations of the bilateral filter
when σd1 = 2.5, σi1 = 2.0σ̂n, σd2 = 3.0, and σi2 = 2.5σ̂n. The PSNR value for this parameter
setting and the percentage of the maximum PSNR value are listed in each cell. Two different
iterations of the bilateral filter performs well and is reasonably stable in the search area. The
performance is slightly better than a single iteration of the bilateral filter and also slightly
less stable.

• Two same bilateral filters
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Time Series 1 Time Series 2 Time Series 3

1% Noise 128.702 129.586 106.938

5% Noise 102.541 101.245 97.853

10% Noise 87.505 84.902 88.481

20% Noise 72.558 67.433 74.769

30% Noise 65.472 60.479 65.889

Table 15: 2 Different Bilateral Filters Best PSNR

Time Series 1 Time Series 2 Time Series 3

1% Noise 124.219/96.5% 124.732/96.3% 98.953/92.5%

5% Noise 97.096/94.7% 97.972/96.8% 92.550/94.6%

10% Noise 83.758/95.7% 78.568/92.5% 84.086/95.0%

20% Noise 68.950/95.0% 62.641/92.9% 72.100/96.4%

30% Noise 62.052/94.8% 58.350/96.5% 65.094/98.8%

Table 16: 2 Different Bilateral Filters Selected Parameters PSNR -
σd1 = 2.5, σi1 = 2.0σ̂n, σd2 = 3.0, σi2 = 2.5σ̂n

Two iterations of the same bilateral filter offered slightly improved performance compared to
a single iteration of the bilateral filter.

Table 17 shows the best performance of two iterations of the same Bilateral filter in the
search area. Table 18 shows the performance of two iterations of the same bilateral filter
when σd1 = 2.5, σi1 = 2.0σ̂n, σd2 = 3.0, and σi2 = 2.5σ̂n. The PSNR value for this parameter
setting and the percentage of the maximum PSNR value are listed in each cell. Two iterations
of the same bilateral filter performs well and is reasonably stable in the search area. The
performance is comparable to two different iteration of the bilateral filter.

Time Series 1 Time Series 2 Time Series 3

1% Noise 126.790 128.683 108.250

5% Noise 103.260 101.220 99.692

10% Noise 87.270 84.463 88.091

20% Noise 71.926 66.703 73.766

30% Noise 65.420 57.585 64.878

Table 17: 2 Same Bilateral Filters Best PSNR

• Bilateral filter iterated to tolerance

Multiple iterations of the same bilateral filter offered performance comparable to a single
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Time Series 1 Time Series 2 Time Series 3

1% Noise 124.104/97.9% 125.701/97.7% 97.981/90.5%

5% Noise 98.423/95.3% 98.219/97.0% 91.889/92.2%

10% Noise 83.413/95.6% 80.776/95.6% 84.786/96.2%

20% Noise 69.228/96.2% 65.098/97.6% 71.679/97.2%

30% Noise 61.121/93.4% 57.585/100.0% 64.878/100.0%

Table 18: 2 Same Bilateral Filters Selected Parameters PSNR - σd = 3.0, σi = 2.0σ̂n

iteration of the bilateral filter.

Table 19 shows the best performance of multiple iterations of the same Bilateral filter in
the search area. Table 20 shows the performance of multiple iterations of the same bilateral
filter when σd = 3.0, and σi = 2.5σ̂n. The PSNR value for this parameter setting and the
percentage of the maximum PSNR value are listed in each cell. Multiple iterations of the same
bilateral filter performs well and is reasonably stable in the search area. The performance can
be lower than a single iteration of the bilateral filter. The stability of the optimal parameters
is lower than for a single iteration of the bilateral filter.

Time Series 1 Time Series 2 Time Series 3

1% Noise 126.387 128.682 120.867

5% Noise 100.102 102.022 98.848

10% Noise 86.418 85.543 87.412

20% Noise 72.479 67.397 73.564

30% Noise 63.684 60.820 65.202

Table 19: Iterated Bilateral Filter Best PSNR

Time Series 1 Time Series 2 Time Series 3

1% Noise 123.012/97.3% 126.306/98.2% 96.433/79.8%

5% Noise 99.427/99.3% 97.578/95.6% 93.087/94.2%

10% Noise 84.112/97.3% 74.561/87.2% 84.502/96.7%

20% Noise 69.483/95.9% 64.130/95.2% 73.112/99.4%

30% Noise 62.807/98.6% 53.906/88.6% 63.868/98.0%

Table 20: Iterated Bilateral Filter Selected Parameters PSNR - σd = 3.0, σi = 2.5σ̂n

• Two different non-local means filters

Two iterations of non-local means offered slightly worse performance compared to a single
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iteration of non-local means.

Table 21 shows the best performance of two iterations of non-local means in the search area.
Table 22 shows the performance of two iterations of non-local means when β1 = 0.3333,
|Y |1 = 7, δ1 = 0.6666, β2 = 0.3333, |Y |2 = 7, and δ2 = 0.3333. The PSNR value for this
parameter setting and the percentage of the maximum PSNR value are listed in each cell. Two
iterations of non-local means does not perform as well as a single iteration but is reasonably
stable in the search area.

Time Series 1 Time Series 2 Time Series 3

1% Noise 107.847 104.524 91.865

5% Noise 89.297 90.918 89.758

10% Noise 77.988 76.564 81.663

20% Noise 67.315 64.974 69.230

30% Noise 60.147 59.249 62.978

Table 21: 2 Different Non-Local Means Best PSNR

Time Series 1 Time Series 2 Time Series 3

1% Noise 107.847/100.0% 102.152/97.7% 90.914/99.0%

5% Noise 87.114/97.6% 87.728/96.5% 86.901/96.8%

10% Noise 76.152/97.6% 75.499/98.6% 80.257/98.3%

20% Noise 62.439/92.8% 60.393/92.9% 66.626/96.2%

30% Noise 59.260/98.5% 55.082/93.0% 60.762/96.5%

Table 22: 2 Different Non-Local Means Selected Parameters PSNR -
β1 = 0.3333, |Y |1 = 7, δ1 = 0.6666, β2 = 0.3333, |Y |2 = 7, δ2 = 0.3333

• Bilateral and non-local means combination

The combination of the bilateral filter and non-local means offered improved performance
compared to either method alone.

Table 23 shows the best performance of the combination of the bilateral filter and non-local
means in the search area. Table 24 shows the performance of the combination of the bilateral
filter and non-local means when σd = 2.5, σi = 1.8σ̂n, β = 0.5, |Y | = 7, and δ = 0.9. The
PSNR value for this parameter setting and the percentage of the maximum PSNR value are
listed in each cell. The combination of the bilateral filter and non-local means performs well
and is reasonably stable in the search area.

4.8 Comparison using 10% noise added data

Figure 25 shows a comparison of the best performance of each method for all three time series at
10% noise, and Figure 26 shows a comparison of the selected parameter performance between all
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Time Series 1 Time Series 2 Time Series 3

1% Noise 116.272 114.415 110.231

5% Noise 100.498 97.932 97.620

10% Noise 87.153 82.641 86.879

20% Noise 73.244 66.868 75.505

30% Noise 67.219 60.023 84.472

Table 23: Bilateral and Non-Local Means Filters Best PSNR

Time Series 1 Time Series 2 Time Series 3

1% Noise 114.572/98.5% 111.731/97.7% 94.137/85.4%

5% Noise 94.730/94.3% 94.948/97.0% 89.549/91.7%

10% Noise 79.659/91.4% 78.388/94.9% 77.953/89.7%

20% Noise 66.427/90.7% 61.955/92.7% 66.799/88.5%

30% Noise 60.274/89.7% 57.825/96.3% 84.472/100.0%

Table 24: Bilateral and Non-Local Means Filters Selected Parameters PSNR -
σd = 2.5, σi = 1.8σ̂n, β = 0.5, |Y | = 7, δ = 0.9

methods considered for all three time series at 10% noise.
Some trends can be seen from these charts. The box filter, Gaussian filter, Fourier transform

coefficient thresholding, and wavelet transform coefficient thresholding consistently offer the worst
performance, and all of these methods may in fact reduce PSNR for the time series. Of the remaining
techniques, multiple iterations of the bilateral filter to tolerance has very inconsistent performance,
sometime performing well and other times being the worst of the remaining techniques.

Two iterations of non-local means often has worse performance than a single iteration, and two
different iterations of the bilateral filter also often has worse performance than a single iteration.
The consistent top performers are the bilateral filter and two iterations of the same bilateral filter.
These techniques offered a 15% to 30% improvement with the selected parameters.

Figures 15, 16, and 17 show the performance of the methods without the combinations on the
known time series with 10% noise added.

The spike at time index 85 in time series 2 is a good example of a feature that is sufficiently
obscured by noise to make it almost impossible to fully recover. The increase in intensity at time
index 64 in time series 1 provides an example of the intensity of the jump being decreased due to
positive noise values on the lower side of the jump and negative noise values on the upper side of
the jump.

As expected, the box and Gaussian filters destroy features in these time series while the bilateral
filter or non-local means appear to do well at denoising the time series while retaining features.
This can be seen particularly well with the jumps in time series 1, the spikes in time series 2, and
the sawteeth in time series 3.

Fourier transform and wavelet transform coefficient thresholding appear to denoise less than
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Time Series 1 Time Series 2 Time Series 3

Noisy 73.582 66.015 65.038

Box Filter 74.047 66.201 65.354

Gaussian Filter 75.844 68.646 69.177

Bilateral Filter 81.774 78.128 84.987

Fourier Transform 69.444 61.559 66.948

Wavelet Transform 64.351 61.333 67.268

Non-Local Means 77.760 75.828 79.996

2 Different Bilateral 87.505 84.902 88.481

2 Same Bilateral 87.270 84.463 88.091

Iterated Bilateral 86.418 85.543 87.412

2 Different NL Means 77.988 76.564 81.663

Bilateral NL Means 87.153 82.641 86.879

Table 25: Performance Comparison at 10% Noise - Best Performance

either the bilateral filter or non-local means in all three time series.

5 Experimental results on real world data

Figures 18, 19, and 20 show real data that is similar to the three known time series that were
investigated above.

As expected, the box and Gaussian filters destroy features in these time series while the bilateral
filter or non-local means appear to do well at denoising the time series while retaining features.
This can be seen particularly well at time indices 110 and 480 for time series 1 and at time index
580 for time series 2.

Fourier transform and wavelet transform coefficient thresholding appear to do better than ex-
pected but denoise less than the bilateral filter or non-local means for time series 1 and 2.

6 Conclusions

The box filter, Gaussian filter, Fourier transform coefficient thresholding, and wavelet transform
coefficient thresholding consistently offer the worst performance, and all of these methods may in
fact reduce PSNR for the time series. Also, Fourier transform coefficient thresholding is difficult to
implement well for incremental time series. These techniques are not recommended as implemented.
The wavelet transform can be improved with better choice of the family of wavelets.

Frequency based techniques such as Fourier transform coefficient thresholding or wavelet trans-
form coefficient thresholding seem to do particularly poorly with a fixed parameter value. The
more common practice with frequency techniques is to use SURE or another metric to fine tune
the denoising parameters.
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Time Series 1 Time Series 2 Time Series 3

Noisy 73.582 66.015 65.038

Box Filter 73.249/98.9% 66.040/99.8% 64.923/99.3%

Gaussian Filter 75.844/100.0% 67.568/98.4% 62.980/91.0%

Bilateral Filter 79.580/97.3% 75.578/96.7% 84.480/99.4%

Fourier Transform 69.444/100.0% 61.559/100.0% 65.227/97.4%

Wavelet Transform 63.265/98.3% 61.333/100.0% 67.268/100.0%

Non-Local Means 77.760/95.7% 75.828/95.1% 79.996/98.8%

2 Different Bilateral 83.758/95.7% 78.568/92.5% 84.086/95.0%

2 Same Bilateral 83.413/95.6% 80.776/95.6% 84.786/96.2%

Iterated Bilateral 84.112/97.3% 74.561/87.2% 84.502/96.7%

2 Different NL Means 76.152/97.6% 75.499/98.6% 80.257/98.3%

Bilateral NL Means 79.659/91.4% 78.388/94.9% 77.953/89.7%

Table 26: Performance Comparison at 10% Noise - Selected Parameters

Non-local means offers a consistent improvement in PSNR, but its performance can be improved
by paring it with a bilateral filter. The parameter β has an important impact on the performance
of non-local means. A future area of research should be to determine if some relationship between
the variance of the time series and the estimated noise variance could be used to chose β. Also,
non-local means should theoretically perform better with longer time series, where more matching
neighborhoods are possible. This possibility should be investigated. It is important to keep in mind
that there is a tradeoff between keeping the data set small to ensure reasonable computation time
and providing sufficient data to ensure good performance for non-local means.

One or two iterations of the same bilateral filter appears to offer the best consistent performance.
Both have relatively stable optimal parameter settings, with a single iteration of the bilateral filter
being slightly more stable. Other versions of multiple iterations of a bilateral filter offer less
consistent results.

Note that only Gaussian white noise was considered in this paper. In future work, non-Gaussian
noise will be considered in the experiments for parameter settings. Instead of the design of experi-
ments used in this paper, possible methods that could automatically find thresholds or parameters
for denoising methods will also be explored.
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Figure 15: Comparison on Simulated Data - Time Series 1
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Figure 16: Comparison on Simulated Data - Time Series 2
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Figure 17: Comparison on Simulated Data - Time Series 3
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Figure 18: Comparison on Real Data - Time Series 1
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Figure 19: Comparison on Real Data - Time Series 2
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Figure 20: Comparison on Real Data - Time Series 3
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